Acta Crystallographica Section C Crystal Structure Communications

ISSN 0108-2701

Azole. 44.¹ Über Morpholinonitroimidazolderivate

Andrzej Gzella,* Urszula Wrzeciono und Wolfram Pöppel

Lehrstuhl für Organische Chemie der K. Marcinkowski Universität der Medizinischen Wissenschaften Poznań, ul. Grunwaldzka 6, 60-780 Poznań, Polen Korrespondenz e-mail: akgzella@eucalyptus.usoms.poznan.pl

Eingegangen am 2. Mai 2000 Angenommen am 19. Juni 2000

The structure analyses of racemic 3-chloro-1-(4-morpholino-5nitroimidazol-1-yl)propan-2-ol, C10H15ClN4O4, (II), and 3chloro-1-(5-morpholino-4-nitroimidazol-1-yl)propan-2-ol, $C_{10}H_{15}CIN_4O_4$, (III), have been undertaken in order to determine the position of the morpholine residue in these two isomers. The morpholine residue in (II) is connected at the 4-position, while in (III), it is connected at the 5-position of the imidazole ring. The morpholine mean planes and nitro groups in the two compounds deviate from the imidazole planes to different extents. The nitro groups in (II) and (III) take part in the conjugation system of the imidazole rings. In consequence, the exocyclic C-N bonds are significantly shorter than the normal single Csp^2 -NO₂ bond and the nitro groups in (II) and (III) show an extraordinary stability on treatment with morpholine and piperidine [Gzella, Wrzeciono & Pöppel (1999). Acta Cryst. C55, 1562–1565]. In the crystal lattice, the molecules of both compounds are linked by O- $H \cdots N$ and $C - H \cdots O$ intermolecular hydrogen bonds.

Kommentar

Die Umsetzung von 3-Chlor-1-(4,5-dinitroimidazol-1-yl)propan-2-ol, (I), mit Morpholin im Molverhältnis von 1:2 führt bei Raumtemperatur zu den stellungsisomeren Monomorpholinoimidazolderivaten, (II) und (III). Bei einem molaren Verhältnis 1:4 von Substrat (I) und Morpholin werden beide Nitrogruppen gegen Morpholinreste ausgetauscht. Es entsteht neben (II) und (III) das 4,5-Dimorpholinoimidazolderivat, (IV). Analog verlaufen die Reaktionen bei der Umsetzung von (I) mit Piperidin (Gzella *et al.*, 1999). Die Verbindungen (I)–(IV) mit dem asymmetrischen C7-Kohlenstoffatom in der Seitenkette liegen als Racemate vor. Die Lage des Morpholinrestes in (II) und (III) läßt sich mit Hilfe spektroskopischer Methoden nicht eindeutig klären. In dieser Mitteilung berichten wir über die röntgenographische Ermittlung der Lage des Morpholinrestes in (II) und (III).

Der Morpholinrest ist in (II) mit dem C4-Kohlenstoffatom, in (III) mit dem C5-Kohlenstoffatom des Imidazolringes

verbunden (Abb. 1 und 2). Der Interplanarwinkel zwischen der Morpholin- und Imidazolebene beträgt in (II) 34,99 (9) und in (III) 64,85 (9)°. Die Nitrogruppe weicht in (II) um 18,03 (11) und in (III) um 10,07 (6)° von der Imidazolringebene ab. Obwohl diese Gruppen nicht exakt in der Imidazolringebene liegen, beteiligen sie sich stark am konjugierten

System des heterozyklischen Ringes. Davon zeugen weitgehende Verkürzungen der exozyklischen C5-N17 und C4-N11 Bindungen in (II) [1,391 (2) Å] und (III) [1,421 (2) Å] im Vergleich zu der normalen Csp^2 -NO₂ Einfachbindungslänge [1,468 (1) Å; Allen et al., 1987]. In dieser Bindungsverkürzung scheint der Grund zu liegen, daß sich die Nitrogruppen in (II) und (III) nicht gegen einen weiteren Morpholinrest austauschen lassen, auch dann wenn ein sechs-fachiger Überschuß des Amins eingesetzt wird und der Versuch unter Sieden (3 h) verläuft. Ein ähnliches Verhalten weist die Nitrogruppe im 3-Chlor-1-(4-nitro-5-piperidinylimidazol-1yl)propan-2-ol auf. In dieser Verbindung läßt sich eine ähnliche C4-NO₂ Bindungslängenverkürzung [Mittelwert von vier Molekülen 1,416 (2) Å] beobachten, wobei jedoch die C4-Nitrogruppe zusätzlich ungefähr in der Imidazolringebene liegt (Gzella et al., 1999). Daraus wäre zu schließen, daß die Stabilität der Nitrogruppen vor allem durch die starke Verkürzung der C-NO₂ Bindungen verursacht ist, weniger dagegen durch die räumliche Stellung der Nitrogruppe. Dazu soll erwähnt sein, daß in (I) beide Nitrogruppen von der Imidazolringebene abweichen [Interplanarwinkel 20,3 (2) und $42,8(1)^{\circ}$], die C-NO₂ Bindungen einen der Einfach-

Abbildung 1 Molekülstruktur von (II) (Wahrscheinlichkeitsniveau der Ellipsoide 50%).

¹ Teil 43: Bernard (2000).

Abbildung 2

Molekülstruktur von (III) (Wahrscheinlichkeitsniveau der Ellipsoide 50%).

bindungslänge ähnlichen Wert aufweisen [1,442 (3) und 1,448 (4) Å] und daß sich auch beide Nitrogruppen gegen Morpholin- bzw. Piperidinreste austauschen lassen (Gzella et al., 1999).

Die Werte der C8-Cl9 Bindungslängen in der Seitenkette von (I) [1,784 (3) Å], (II) [1,791 (2) Å] und (III) [1,787 (2) Å] liegen im Bereich einer normalen Csp^3 -Cl Bindung [1,790 (2) Å; Allen et al., 1987]. Überraschend findet aber keine Substitution des Chloratoms unter den beschriebenen Bedingungen statt. Ein ähnliches Verhalten weist das Chloratom im oben erwähnten 3-Chlor-1-(4-nitro-5piperidinylimidazol-1-yl)propan-2-ol auf. Für die vier unabhängigen Moleküle dieser Verbindung beträgt der Mittelwert der C-Cl-Bindungslänge 1,779 (2) Å (Gzella et al., 1999).

Im Kristallgitter von (II) binden die Wasserstoffbrückenbindungen O10-H10A···N3ⁱ [Symmetrieoperator: (i) 1 - x, $\frac{1}{2}$ + y, 1 - z; Tabelle 2] die Moleküle in zickzackförmige Ketten, die sich in Richtung der y-Achse entwickeln. Nicht konventionelle C-H···O Wasserstoffbrücken binden die einzelnen Ketten zu einem dreidimensionellen Kristallnetz (Tabelle 2).

Im Kristallgitter von (III) sind die Moleküle der (R)- und (S)-Enantiomere über Wasserstoffbrückenbindungen O10-H10A···N3^v [Symmetrieoperator: (v) 1 - x, 1 - y, -z; Tabelle 4] zu Dimeren verbunden. Letztere bilden in Richtung der y-Achse verlaufende Ketten, in denen nicht konventionelle Wasserstoffbrückenbindungen C-H···O aufzufinden sind (Tabelle 4).

Experimentelles

1-(3-Chlor-2-hydroxypropyl)-4,5-dinitroimidazol, (I), wurde nach der Methode von Zaprutko et al. (1989) hergestellt. Verbindungen (II), (III) und 1-(3-Chlor-2-hydroxypropyl)-4,5-dimorpholinoimidazol, (IV), wurden nach dem von Gzella et al. (1999) beschriebenen Verfahren erhalten. Unterschiedlich wurde anstelle Piperidin Morpholin verwendet, das Reaktionsgemisch bei der Herstellung von (IV) 1 h zum Sieden erhitzt und erst dann über Nacht stehengelassen. Verbindung (II): aus Methanol gelbe Nadeln vom Schmelzpunkt 423-424 K; Ausbeute 69,8%; Verbindung (III): aus Methanol gelbe Prismen vom Schmelzpunkt 402-404 K; Ausbeute 8,6%. Elementaranalyse berechnet für (II) und (III), C₁₀H₁₅ClN₄O₄ (290,71): C 41,32,

H 5,20, Cl 12,20, N 19,27%; gefunden für (II): C 41,58, H 5,20, Cl 12,42, N 19,13%; gefunden für (III): C 41,51, H 5,33, Cl 12,11, N 19,39%; Verbindung (IV): aus Ethylacetat farblose Stäbchen vom Schmelzpunkt 443-444 K; Ausbeute 61,0%. Elementaranalyse berechnet für (IV), C₁₄H₂₃ClN₄O₃ (330,82): C 50,83, H 7,01, Cl 10,72, N 16,94%; gefunden: C 51,00, H 6,93, Cl 10,49, N 16,72%.

 $D_x = 1,534 \text{ Mg m}^{-3}$

Gitterparameter aus 55

 $0,54 \times 0,17 \times 0,10 \text{ mm}$

Cu Ka Strahlung

Reflexen $\theta = 16{,}8{-}31{,}8^\circ$

 $\mu = 2.878 \text{ mm}^{-1}$

T = 293 (2) K

Nadel, gelb

 $R_{\rm int} = 0,032$

 $\theta_{\rm max} = 70,11^{\circ}$

 $k = -6 \rightarrow 6$

 $l = 0 \rightarrow 15$

 $h = -11 \rightarrow 11$

2 Kontrollreflexe

alle 100 Reflexe

Intensitätsschwankung: 0,8%

Verbindung (II)

Kristalldaten

C10H15ClN4O4 $M_r = 290,71$ Monoklin, P21 a = 9,6840 (8) Å b = 5,2868 (8) Å c = 12,8212 (7) Å $\beta = 106,470 \ (6)^{\circ}$ $V = 629,48 (11) \text{ Å}^3$ Z = 2

Datensammlung

Kuma Diffraction KM-4 Diffraktometer $\omega/2\theta$ -Scans Absorptionskorrektur: ψ -Scan (North et al., 1968) $T_{\min} = 0,511, \ T_{\max} = 0,750$ 2286 gemessene Reflexe 2245 unabhängige Reflexe 2201 Reflexe mit $I > 2\sigma(I)$

Verfeinerung

Verfeinerung auf F^2	$(\Delta/\sigma)_{\rm max} = 0.010$
$R[F^2 > 2\sigma(F^2)] = 0.025$	$\Delta \rho_{\rm max} = 0.17 \text{ e } \text{\AA}^{-3}$
$wR(F^2) = 0.072$	$\Delta \rho_{\rm min} = -0.26 \text{ e } \text{\AA}^{-3}$
S = 1,038	Extinktionskorrektur: SHELXL97
2245 Reflexe	(Sheldrick, 1997)
178 Parameter	Extinktionskoeffizient: 0,0246 (15)
H-Atome: s. u.	Absolute Struktur: Flack (1983)
Berechnete Gewichtungen $w =$	Flack-Parameter = 0,344 (13)
$1/[\sigma^2(F_o^2) + (0.0482P)^2 +$	
$0,0886P$] wobei $P = (F_o^2 + 2F_c^2)/3$	

Tabelle 1

Geometrische Parameter (Å, °) für (II).

N1-C2 N1-C5 C2-N3 N3-C4	1,330 (2) 1,388 (2) 1,321 (2) 1,364 (2)	C4-N11 C4-C5 C5-N17 C8-C19	1,354 (2) 1,400 (2) 1,391 (2) 1,791 (2)
C2-N1-C5 N3-C2-N1 C2-N3-C4	105,48 (12) 113,89 (14) 105,83 (13)	N3-C4-C5 N1-C5-C4	108,23 (13) 106,50 (13)

Tabelle 2

Geometrie der Wasserstoffbrücken (Å, °) für (II).

$D - H \cdots A$	D-H	$H \cdots A$	$D \cdots A$	$D - H \cdots A$
$\begin{array}{c} 010 - H10A \cdots N3^{i} \\ C6 - H6B \cdots O19^{ii} \\ C8 - H8A \cdots O14^{iii} \\ C16 - H16B \cdots O18 \\ C16 - H16B \cdots O19^{iv} \end{array}$	0,73 (3)	2,08 (3)	2,7948 (19)	167 (3)
	0,97	2,55	3,224 (2)	126
	0,97	2,50	3,372 (2)	149
	0,97	2,27	2,918 (2)	124
	0,97	2,55	3,295 (2)	134

Symmetrieoperatoren: (i) $1 - x, \frac{1}{2} + y, 1 - z$; (ii) x, y - 1, z; (iii) x, y, z - 1; (iv) $-x, y - \frac{1}{2}, 1 - z.$

Verbindung (III)

Kristalldaten

$C_{10}H_{15}ClN_4O_4$	Z = 2
$M_r = 290,71$	$D_x = 1,521 \text{ Mg m}^{-3}$
Triklin, P1	Cu Ka Strahlung
a = 6,5036 (8) Å	Gitterparameter aus 43
b = 7,8493 (9) Å	Reflexen
c = 12,9757 (14) Å	$\theta = 11,3-30,0^{\circ}$
$\alpha = 91,101 \ (9)^{\circ}$	$\mu = 2,853 \text{ mm}^{-1}$
$\beta = 101,026 \ (10)^{\circ}$	T = 293 (2) K
$\gamma = 101,940 \ (10)^{\circ}$	Prisma, gelb
$V = 634,91 (13) \text{ Å}^3$	$0,38 \times 0,27 \times 0,05 \text{ mm}$
Deterreture	

Datensammlung

Kuma Diffraction KM-4 Diffrakto-	$R_{\rm int} = 0.022$
meter	$\theta_{\rm max} = 70,04^{\circ}$
$\omega/2\theta$ -Scans	$h = -7 \rightarrow 7$
Absorptionskorrektur: ψ -Scan	$k = -9 \rightarrow 9$
(North et al., 1968)	$l = 0 \rightarrow 15$
$T_{\min} = 0,440, \ T_{\max} = 0,867$	2 Kontrollreflexe
2386 gemessene Reflexe	alle 100 Reflexe
2281 unabhängige Reflexe	Intensitätsschwankung: 3,8%
2036 Reflexe mit $I > 2\sigma(I)$	

Tabelle 3

Geometrische Parameter (Å, °) für (III).

N1-C2	1,358 (2)	C4-C5	1,379 (3)
N1-C5	1,377 (2)	C4-N11	1,421 (2)
C2-N3	1,303 (3)	C5-N14	1,378 (2)
N3-C4	1,370 (2)	C8-Cl9	1,787 (2)
C2-N1-C5	107,45 (15)	N3-C4-C5	112,18 (16)
N3-C2-N1	112,92 (16)	N1-C5-C4	103,47 (15)
C2-N3-C4	103,95 (15)		

Tabelle 4

Geometrie der Wasserstoffbrücken (Å, °) für (III).

$D-\mathrm{H}\cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - H \cdots A$
$O10-H10A\cdots N3^{v}$	0,88 (3)	1,98 (3)	2,850 (2)	169 (3)
$C7-H7A\cdots O13^{v}$	0,98	2,57	3,396 (2)	142
$C8-H8A\cdots O17^{vi}$	0,97	2,50	3,364 (3)	149
C15−H15B···O10	0,97	2,46	3,359 (2)	154
C19−H19 <i>B</i> ···O12	0,97	2,34	2,947 (3)	120

Symmetrieoperatoren: (v) 1 - x, 1 - y, -z; (vi) x, 1 + y, z.

Verfeinerung

Verfeinerung auf F^2 $R[F^2 > 2\sigma(F^2)] = 0,041$ $wR(F^2) = 0,122$ S = 1,054 2281 Reflexe 1/26 Parameter	Berechnete Gewichtungen $w = 1/[\sigma^2(F_o^2) + (0.0695P)^2 + 0.2622P]$ wobei $P = (F_o^2 + 2F_c^2)/3$ $(\Delta/\sigma)_{max} < 0.001$ $\Delta\rho_{max} = 0.36 \text{ e} \text{ Å}^{-3}$ $\Delta \alpha_{-x} = -0.28 \text{ e} \text{ Å}^{-3}$
176 Parameter H-Atome: s. u.	$\Delta \rho_{\rm max} = 0.50 \text{ e } \text{Å}^{-3}$ $\Delta \rho_{\rm min} = -0.28 \text{ e } \text{Å}^{-3}$

Alle H-Atome wurden in (II) und (III) aus Differenz-Fourier-Synthesen ermittelt. Die H-Atome der Hydroxylgruppen wurden in (II) und (III) frei verfeinert. Alle übrigen H-Atome wurden mit Hilfe des Reitermodells verfeinert; $U_{iso}(H) = 1, 2U_{iaq}(C)$. Der untersuchte Kristall von Verbindung (II) ist im Verhältnis 65,6 (13) zu 34,4 (13) racemisch verzwillingt. Für (II) wurde der Ursprung in der polaren Raumgruppe nach der Methode von Flack & Schwarzenbach (1988) festgelegt. Bei der Bestimmung der absoluten Konfiguration von (II) wurden 910 Friedel-Reflexpaare ausgewertet.

Für beide Verbindungen, Datensammlung: Kuma KM-4 Software (Kuma Diffraction, 1991); Zellverfeinerung: Kuma KM-4 Software; Datenreduktion: Kuma KM-4 Software; Lösung der Strukturen: SHELXS97 (Sheldrick, 1990); Verfeinerung der Strukturen: SHELXL97 (Sheldrick, 1997); Molekülgrafik: ORTEP-3 for Windows (Farrugia, 1997); Programm für die Herstellung von Veröffentlichungsmaterialien: SHELXL97.

Ergänzende Daten für diese Veröffentlichung können vom elektronischen Archiv des IUCr (Referenz: JZ1415) bezogen werden. Zugangsmöglichkeiten für diese Daten werden auf der dritten Umschlagseite beschrieben.

Literatur

- Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.
- Bernard, M. K. (2000). Tetrahedron, 56, 8407.
- Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
- Flack, H. D. (1983). Acta Cryst. A39, 876-881.
- Flack, H. D. & Schwarzenbach, D. (1988). Acta Cryst. A44, 499-506.
- Gzella, A., Wrzeciono, U. & Pöppel, W. (1999). Acta Cryst. C55, 1562–1565.
- Kuma Diffraction (1991). *Kuma KM-4 Software*. Version 1991*t*. Kuma Diffraction, Wrocław, Polen.
- North, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351– 359.
- Sheldrick, G. M. (1990). Acta Cryst. A46, 467-473.
- Sheldrick, G. M. (1997). SHELXL97. Universität Göttingen, Deutschland.

Zaprutko, L., Gajdziński, M., Michalska, W., Pietkiewicz, K., Lutomski, K., Łukaszewski, Z. & Wrzeciono, U. (1989). *Pharmazie*, **44**, 817–820.